Download this PDF file Fullscreen Fullscreen Off
References
- Benjamini, Itai; Häggström, Olle; Mossel, Elchanan. On random graph homomorphisms into ${\bf Z}$. J. Combin. Theory Ser. B 78 (2000), no. 1, 86--114. MR1737627
- Benjamini, Itai; Yadin, Ariel; Yehudayoff, Amir. Random graph-homomorphisms and logarithmic degree. Electron. J. Probab. 12 (2007), no. 32, 926--950. MR2324796
- Brascamp, Herm Jan; Lieb, Elliot H.; Lebowitz, Joel L. The statistical mechanics of anharmonic lattices. Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), Vol. 1. Invited papers. Bull. Inst. Internat. Statist. 46 (1975), no. 1, 393--404 (1976). MR0676341
- Galvin, David. On homomorphisms from the Hamming cube to ${\bf Z}$. Israel J. Math. 138 (2003), 189--213. MR2031957
- Kahn, J. Range of cube-indexed random walk. Israel J. Math. 124 (2001), 189--201. MR1856513
- R. Peled, phHigh-dimensional Lipschitz functions are typically flat, ARXIV1005.4636v1.
- R. Peled, W. Samotij, and A. Yehudayoff, phH-coloring expander graphs, in preparation.
- bysame, phLipschitz functions on expanders are typically flat, to appear in Combin. Probab. Comput.
- Velenik, Yvan. Localization and delocalization of random interfaces. Probab. Surv. 3 (2006), 112--169. MR2216964

This work is licensed under a Creative Commons Attribution 3.0 License.