Download this PDF file Fullscreen Fullscreen Off
References
- Alexander, K.; Chayes, J. T.; Chayes, L. The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation. Comm. Math. Phys. 131 (1990), no. 1, 1--50. MR1062747
- Alexander, Kenneth S. Stability of the Wulff minimum and fluctuations in shape for large finite clusters in two-dimensional percolation. Probab. Theory Related Fields 91 (1992), no. 3-4, 507--532. MR1151807
- Beffara, V.; Duminil-Copin, H. Smirnov's fermionic observable away from criticality. Ann. Probab. 40 (2012), no. 6, 2667--2689. MR3050513
- bysame, Lectures on planar percolation with a glimpse of Schramm Loewner Evolution, to appear in Probability surveys, arXiv:1107.0158 (2013), 43 pages.
- Broadbent, S. R.; Hammersley, J. M. Percolation processes. I. Crystals and mazes. Proc. Cambridge Philos. Soc. 53 (1957), 629--641. MR0091567
- Bodineau, T. The Wulff construction in three and more dimensions. Comm. Math. Phys. 207 (1999), no. 1, 197--229. MR1724851
- Bollobás, Béla; Riordan, Oliver. Percolation. Cambridge University Press, New York, 2006. x+323 pp. ISBN: 978-0-521-87232-4; 0-521-87232-4 MR2283880
- Cerf, Raphaël. Large deviations for three dimensional supercritical percolation. Astérisque No. 267 (2000), vi+177 pp. MR1774341
- Cerf, R. The Wulff crystal in Ising and percolation models. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004. With a foreword by Jean Picard. Lecture Notes in Mathematics, 1878. Springer-Verlag, Berlin, 2006. xiv+264 pp. ISBN: 978-3-540-30988-8; 3-540-30988-8 MR2241754
- Campanino, Massimo; Ioffe, Dmitry. Ornstein-Zernike theory for the Bernoulli bond percolation on $\Bbb Z^ d$. Ann. Probab. 30 (2002), no. 2, 652--682. MR1905854
- Campanino, M.; Ioffe, D.; Louidor, O. Finite connections for supercritical Bernoulli bond percolation in 2D. Markov Process. Related Fields 16 (2010), no. 2, 225--266. MR2666853
- Camia, Federico; Newman, Charles M. Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys. 268 (2006), no. 1, 1--38. MR2249794
- Camia, Federico; Newman, Charles M. Critical percolation exploration path and ${\rm SLE}_ 6$: a proof of convergence. Probab. Theory Related Fields 139 (2007), no. 3-4, 473--519. MR2322705
- Cerf, Raphaël; Pisztora, Ágoston. On the Wulff crystal in the Ising model. Ann. Probab. 28 (2000), no. 3, 947--1017. MR1797302
- Chelkak, Dmitry; Smirnov, Stanislav. Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189 (2012), no. 3, 515--580. MR2957303
- H. Duminil-Copin, C. Garban, and G. Pete, The near-critical planar FK-Ising model, to appear in Comm. Math. Phys., arXiv:1111.0144, 2011.
- Duminil-Copin, Hugo; Smirnov, Stanislav. Conformal invariance of lattice models. Probability and statistical physics in two and more dimensions, 213--276, Clay Math. Proc., 15, Amer. Math. Soc., Providence, RI, 2012. MR3025392
- Dobrushin, R.; Kotecký, R.; Shlosman, S. Wulff construction. A global shape from local interaction. Translated from the Russian by the authors. Translations of Mathematical Monographs, 104. American Mathematical Society, Providence, RI, 1992. x+204 pp. ISBN: 0-8218-4563-2 MR1181197
- Garban, Christophe; Pete, Gábor; Schramm, Oded. Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26 (2013), no. 4, 939--1024. MR3073882
- bysame, The scaling limits of dynamical and near-critical percolation, 2013, arXiv:1305.5526, p. 86 pages.
- Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
- Ioffe, Dmitry; Schonmann, Roberto H. Dobrushin-Kotecký-Shlosman theorem up to the critical temperature. Comm. Math. Phys. 199 (1998), no. 1, 117--167. MR1660207
- Kenyon, Richard. Conformal invariance of domino tiling. Ann. Probab. 28 (2000), no. 2, 759--795. MR1782431
- Kesten, Harry. Percolation theory for mathematicians. Progress in Probability and Statistics, 2. Birkhäuser, Boston, Mass., 1982. iv+423 pp. ISBN: 3-7643-3107-0 MR0692943
- Kesten, Harry. Scaling relations for $2$D-percolation. Comm. Math. Phys. 109 (1987), no. 1, 109--156. MR0879034
- B.M. McCoy and T.T. Wu, The two-dimensional Ising model, Harvard University Press, Cambridge, MA, 1973.
- Nolin, Pierre. Near-critical percolation in two dimensions. Electron. J. Probab. 13 (2008), no. 55, 1562--1623. MR2438816
- Pfister, C.-E. Large deviations and phase separation in the two-dimensional Ising model. Helv. Phys. Acta 64 (1991), no. 7, 953--1054. MR1149430
- Smirnov, Stanislav. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239--244. MR1851632
- Smirnov, Stanislav. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2) 172 (2010), no. 2, 1435--1467. MR2680496
- Schramm, Oded; Smirnov, Stanislav. On the scaling limits of planar percolation [ MR2884873 (2012j:60277)]. With an appendix by Christophe Garban. Sel. Works Probab. Stat., Selected works of Oded Schramm. Volume 1, 2, 1193--1247, Springer, New York, 2011. MR2883400
- Smirnov, Stanislav; Werner, Wendelin. Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 (2001), no. 5-6, 729--744. MR1879816
- W. Werner, Lectures on two-dimensional critical percolation, IAS Park City Graduate Summer School, 2007.

This work is licensed under a Creative Commons Attribution 3.0 License.