Download this PDF file Fullscreen Fullscreen Off
References
- Aurzada, F., Dereich, S. and Lifshits, M.: Persistence probabilities for an integrated random walk bridge. Probab. Math. Statist. 34, (2014), 1--22.
- Aurzada, F. and Simon, T.: Persistence probabilities & exponents, ARXIV1203.6554
- Caravenna, Francesco; Deuschel, Jean-Dominique. Pinning and wetting transition for $(1+1)$-dimensional fields with Laplacian interaction. Ann. Probab. 36 (2008), no. 6, 2388--2433. MR2478687
- Dembo, Amir; Ding, Jian; Gao, Fuchang. Persistence of iterated partial sums. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013), no. 3, 873--884. MR3112437
- Denisov, D. and Wachtel, V.: Random walks in cones, ARXIV1110.1254
- Denisov, D. and Wachtel, V.: Exit times for integrated random walks, ARXIV1207.2270
- Gut, Allan. Probability: a graduate course. Second edition. Springer Texts in Statistics. Springer, New York, 2013. xxvi+600 pp. ISBN: 978-1-4614-4707-8; 978-1-4614-4708-5 MR2977961
- Vysotsky, Vladislav. Positivity of integrated random walks. Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 1, 195--213. MR3161528

This work is licensed under a Creative Commons Attribution 3.0 License.