Monotone interaction of walk and graph: recurrence versus transience
Ruojun Huang (Stanford University)
Vladas Sidoravicius (IMPA)
Abstract
We consider recurrence versus transience for models of random walks on growing in time, connected subsets $\mathbb{G}_t$ of some fixed locally finite, connected graph, in which monotone interaction enforces such growth as a result of visits by the walk (or probes it sent), to the neighborhood of the boundary of $\mathbb{G}_t$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-12
Publication Date: November 6, 2014
DOI: 10.1214/ECP.v19-3607
References
- Amir, Gideon; Benjamini, Itai; Gurel-Gurevich, Ori; Kozma, Gady. Random walk in changing environment. Unpublished manuscript (2008).
- Angel, Omer; Crawford, Nicholas; Kozma, Gady. Localization for linearly edge reinforced random walks. Duke Math. J. 163 (2014), no. 5, 889--921. MR3189433
- Dembo, Amir; Huang, Ruojun; Sidoravicius, Vladas. Walking within growing domains: recurrence versus transience. Arxiv:1312.4610 (2013). To appear, Elec. J. Probab.
- Disertori, Margherita; Sabot, Christophe; Tarre, Pierre. Transience of edge-reinforced random walk. arXiv:1403.6079v2 (2014).
- Durrett, Rick. Probability: theory and examples. Fourth edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. x+428 pp. ISBN: 978-0-521-76539-8 MR2722836
- den Hollander, Frank; Molchanov, Stanislav A.; Zeitouni, Ofer. Random media at Saint-Flour. Reprints of lectures from the Annual Saint-Flour Probability Summer School held in Saint-Flour. Probability at Saint-Flour. Springer, Heidelberg, 2012. vi+564 pp. ISBN: 978-3-642-32948-7 MR3059554
- Kozma, Gady. Reinforced random walk. Proc. of Europ. Cong. Math. (2012), 429-443.
- Kozma, Gady. Centrally excited random walk is reccurent. Unpublished manuscript (2006).
- Lawler, Gregory F. Intersections of random walks. Probability and its Applications. Birkhauser Boston, Inc., Boston, MA, 1991. 219 pp. ISBN: 0-8176-3557-2 MR1117680
- Lawler, Gregory F.; Limic, Vlada. Random walk: a modern introduction. Cambridge Studies in Advanced Mathematics, 123. Cambridge University Press, Cambridge, 2010. xii+364 pp. ISBN: 978-0-521-51918-2 MR2677157
- Sabot, Christophe; Tarres, Pierre. Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model. arXiv:1111.3991v4 (2012). To appear, J. Eur. Math. Soc.

This work is licensed under a Creative Commons Attribution 3.0 License.