Download this PDF file Fullscreen Fullscreen Off
References
- Avram, Florin; Taqqu, Murad S. Weak convergence of sums of moving averages in the $\alpha$-stable domain of attraction. Ann. Probab. 20 (1992), no. 1, 483--503. MR1143432
- Basrak, Bojan; Krizmanić, Danijel; Segers, Johan. A functional limit theorem for dependent sequences with infinite variance stable limits. Ann. Probab. 40 (2012), no. 5, 2008--2033. MR3025708
- Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564
- Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1989. xx+494 pp. ISBN: 0-521-37943-1 MR1015093
- Davis, Richard A. Stable limits for partial sums of dependent random variables. Ann. Probab. 11 (1983), no. 2, 262--269. MR0690127
- Embrechts, Paul; Klüppelberg, Claudia; Mikosch, Thomas. Modelling extremal events. For insurance and finance. Applications of Mathematics (New York), 33. Springer-Verlag, Berlin, 1997. xvi+645 pp. ISBN: 3-540-60931-8 MR1458613
- Feller, William. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley & Sons, Inc., New York-London-Sydney 1971 xxiv+669 pp. MR0270403
- Gnedenko, B. V.; Kolmogorov, A. N. Limit distributions for sums of independent random variables. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1954. ix+264 pp. MR0062975
- Hsing, T.; Hüsler, J.; Leadbetter, M. R. On the exceedance point process for a stationary sequence. Probab. Theory Related Fields 78 (1988), no. 1, 97--112. MR0940870
- Leadbetter, M. R. On extreme values in stationary sequences. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 289--303. MR0362465
- Leadbetter, M. R. Weak convergence of high level exceedances by a stationary sequence. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), no. 1, 11--15. MR0394832
- Leadbetter, M. R.; Rootzén, Holger. Extremal theory for stochastic processes. Ann. Probab. 16 (1988), no. 2, 431--478. MR0929071
- O'Brien, George L. Extreme values for stationary and Markov sequences. Ann. Probab. 15 (1987), no. 1, 281--291. MR0877604
- Pang, Guodong; Whitt, Ward. Continuity of a queueing integral representation in the $M_ 1$ topology. Ann. Appl. Probab. 20 (2010), no. 1, 214--237. MR2582647
- Resnick, Sidney I. Heavy-tail phenomena. Probabilistic and statistical modeling. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2007. xx+404 pp. ISBN: 978-0-387-24272-9; 0-387-24272-4 MR2271424
- Rvačeva, E. L. On domains of attraction of multi-dimensional distributions. 1962 Select. Transl. Math. Statist. and Probability, Vol. 2 pp. 183--205 American Mathematical Society, Providence, R.I. MR0150795
- Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, Vol. 68, Cambridge University Press, Cambridge, 1999.
- Skorohod, A. V. Limit theorems for stochastic processes. (Russian) Teor. Veroyatnost. i Primenen. 1 (1956), 289--319. MR0084897
- Skorohod, A. V. Limit theorems for stochastic processes with independent increments. (Russian) Teor. Veroyatnost. i Primenen. 2 1957 145--177. MR0094842
- Tyran-Kamińska, Marta. Convergence to Lévy stable processes under some weak dependence conditions. Stochastic Process. Appl. 120 (2010), no. 9, 1629--1650. MR2673968
- Whitt, Ward. Stochastic-process limits. An introduction to stochastic-process limits and their application to queues. Springer Series in Operations Research. Springer-Verlag, New York, 2002. xxiv+602 pp. ISBN: 0-387-95358-2 MR1876437

This work is licensed under a Creative Commons Attribution 3.0 License.