Download this PDF file Fullscreen Fullscreen Off
References
- Alves, O. S. M.; Machado, F. P.; Popov, S. Yu. Phase transition for the frog model. Electron. J. Probab. 7 (2002), no. 16, 21 pp. MR1943889
- Dembo, A.; Zeitouni, O. Large deviations techniques and applications. Corrected reprint of the second (1998) edition. Stochastic Modelling and Applied Probability, 38. Springer-Verlag, Berlin, 2010. xvi+396 pp. ISBN: 978-3-642-03310-0 MR2571413
- Gantert, N.; Schmidt, P. Recurrence for the frog model with drift on $\Bbb Z$. Markov Process. Related Fields 15 (2009), no. 1, 51--58. MR2509423
- Popov, S. Yu. Frogs in random environment. J. Statist. Phys. 102 (2001), no. 1-2, 191--201. MR1819703
- Popov, S. Yu. Frogs and some other interacting random walks models. Discrete random walks (Paris, 2003), 277--288 (electronic), Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003. MR2042394
- Telcs, A.; Wormald, N. C. Branching and tree indexed random walks on fractals. J. Appl. Probab. 36 (1999), no. 4, 999--1011. MR1742145

This work is licensed under a Creative Commons Attribution 3.0 License.