Download this PDF file Fullscreen Fullscreen Off
References
- M. Aizenman and G. R. Grimmett, (1991), Strict monotonicity for critical points in percolation and ferromagnetic models J. Statist. Phys. 63, 817--835. Math. Review 92i:82060.
- E. Babson and I. Benjamini (1995), Cut sets in Cayley graphs, preprint.
- I. Benjamini and Y. Peres (1994), Markov chains indexed by trees, Ann. Prob. 22, 219--243. Math. Review 94j:60131.
- I. Benjamini and O. Schramm (1996), Conformal invariance of Voronoi percolation, preprint. Abstract and PostScript.
- R. M. Burton and M. Keane (1989), Density and uniqueness in percolation, Comm. Math. Phy. 121, 501--505. Math. Review 90g:60090.
- M. Campanino, L. Russo (1985), An upper bound on the critical percolation probability for the three-dimensional cubic lattice, Ann. Probab. 13, 478--491. Math. Review 86j:60222.
- J. Dodziuk (1984), Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284, 787--794. Math. Review 85m:58185.
- E. Ghys, A. Haefliger and A. Verjovsky eds (1991), Group theory from a geometrical viewpoint, World Scientific. Math. Review 93a:20001.
- G. R. Grimmett (1989), Percolation, Springer-Verlag, New York. Math. Review 90j:60109.
- G. R. Grimmett and C. M. Newman (1990), Percolation in $infty+1$ dimensions, in Disorder in physical systems, (G. R. Grimmett and D. J. A. Welsh eds.), Clarendon Press, Oxford, 219--240. Math. Review 92a:60207.
- O. Häggström (1996), Infinite clusters in dependent automorphism invariant percolation on trees, preprint.
- T. Hara and G. Slade (1989), The triangle condition for percolation, Bull. Amer. Math. Soc. (N.S.) 21, 269--273. Math. Review 90b:60136.
- H. Kesten (1980), The critical probability of bond percolation on the square lattice equals ½, Comm. Math. Phys. 74, 41--59. Math. Review 82c:60179.
- R. Langlands, P. Pouliot, and Y. Saint-Aubin (1994), Conformal invariance in two-dimensional percolation, Bull. Amer. Math. Soc. (N.S.) 30, 1--61. Math. Review 94e:82056.
- R. Lyons (1995), Random walks and the growth of groups, C. R. Acad. Sci. Paris Sir. I Math. 320, 1361--1366. Math. Review 96e:60015.
- R. Lyons (1996), Probability and trees, preprint.
- W. Magnus, A. Karrass and D. Solitar (1976), Combinatorial group theory, Dover, New York. Math. Review 54#10423.
- R. Meester (1994), Uniqueness in percolation theory, Statistica Neerlandica 48 (1994), 237--252. Math. Review 96a:60082.
- M. V. Men´shikov (1987), Quantitative estimates and strong inequalities for the critical points of a graph and its subgraph, (Russian) Teor. Veroyatnost. i Primenen. 32, 599--602. Eng. transl., Theory Probab. Appl. 32, 544--546. Math. Review 89f:60122.
- C. M. Newman and L. S. Schulman (1981), Infinite clusters in percolation models, J. Stat. Phys. 26, 613--628. Math. Review 83e:82038.
- L. Russo (1981), On the critical percolation probabilities, Z. Wahrsch. Verw. Gebiete 56, 229--237. Math. Review 82i:60182.
- J. C. Wierman (1989), AB Percolation: a brief survey, in Combinatorics and graph theory 25, Banach Center Publications, 241--251.

This work is licensed under a Creative Commons Attribution 3.0 License.