Surface Stretching for Ornstein Uhlenbeck Velocity Fields
Stanislav Grishin (Princeton University)
Lin Xu (Princeton University)
Stanislav Molchanov (University of North Carolina at Charlotte)
Abstract
The present note deals with large time properties of the Lagrangian trajectories of a turbulent flow in $R^2$ and $R^3$. We assume that the flow is driven by an incompressible time-dependent random velocity field with Gaussian statistics. We also assume that the field is homogeneous in space and stationary and Markovian in time. Such velocity fields can be viewed as (possibly infinite dimensional) Ornstein-Uhlenbeck processes. In d spatial dimensions we established the (strict) positivity of the sum of the largest $d-1$ Lyapunov exponents. As a consequences of this result, we prove the exponential stretching of surface areas (when $d=3$) and of curve lengths (when $d=2$.) This confirms conjectures found in the theory of turbulent flows.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-11
Publication Date: January 25, 1996
DOI: 10.1214/ECP.v2-980
References
- A. Antoniadis and R. Carmona (1985): Infinite Dimensional Ornstein Ulhenbeck Processes Probab. Th. Rel. Fields 74, 31-54. Math Review link
- Avellaneda and A. Majda (1990): Mathematical models with exact renormalization for turbulent transport. Commun. Math. Phys. 131 , 31-54. Math Review link
- M. Avellaneda and A. Majda (1991): An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows. Commun. Math. Phys. 138 , 339-391. Math Review link
- P.H. Baxendale (1986): Asymptotic Behavior of Stochastic Flows of Diffeomorphisms: Two Case Studies. Proba. Th. Rel. Fields 73 , 51-85. Math Review link
- P. Baxendale and B. Rozovskii (1993): Dynamo Effect for Random Magnetic Fields. Geophys. Astrophys. Fluid Dynam. 73, 33--60. Math Review link
- P. Bougerol(1988): Theoremes limites pour les systemes lineaires a coefficients markoviens, Probab. Th. Rel. Fields, 78 , 193-221. Math Review link
- P. Bougerol(1988): Comparaison des exposants de Lyapounov des processus markoviens multiplicatifs. Ann. Inst. Henri Poincare, 24 , 439-489. Math Review link
- R. Carmona (1997): Transport properties of Gaussian Velosity Fields. First S.M.F Winter School in Random Media. Rennes 1994 in Real and Stochastic Analysis: Recent Advances. ed. M.M. Rao, CRC Press. Math Review number not available
- R. Carmona, S. Grishin and S. Molchanov (1994): Massively Parallel Simulations of the Transport Properties of Gaussian Velocity Fields. Mathematical Models for Oceanography eds R. Adler, P.Muller, B. Rosovskii. Birkhauser. Math Review link
- R. Carmona and J. Lacroix (1990): Spectral Theory of Random Schrodinger Operators. Birkha"user, Boston. Math Review link
- R. Carmona and L. Xu (1996): Homogenization for Time Dependent 2-D Incompressible Gaussian Flows. Ann. of Applied Prob. 7 , 265-279. Math Review number not available
- A. J. Chorin (1994): Vorticity and Turbulence. Springer-Verlag Math Review link
- H. Furstenberg and H. Kesten (1960): Products of Random Matrices. Ann. Math. Statist. 31 , 457-469. Math Review number not available
- K. Ito and H.P. McKean, Jr. (1974): Diffusion Processes and their Sample Paths. Springer Verlag, New York, N.Y. Math Review number not available
- H. Kunita (1990): Stochastic Flows and Stochastic Differential Equations. Cambridge Univ. Press. Boston, MA. Math Review link
- Y. Le Jan (1984): On isotropic Brownian motions. Z. Wahrscheinlichkeitstheorie verw. Geb. 70 , 609-620. Math Review link
- Y. Le Jan (1991): Asymptotic Properties of Isotropic Brownian Flows. in Spatial Stochastic Processes eds K.S. Alexander, J.C. Watkins, pp 219-232, Birkha"user, Boston. Math Review link
- A.D. Virtser (1979): On products of random matrixes and operators. Theory of Probability and its Applications 24 , 367-377. Math Review link
- C.L. Zirbel (1993): Stochastic Flows: Dispersion of a Mass Distribution and Lagrangian Observations of a Random Field. Ph. D. Princeton. Math Review link number not available.

This work is licensed under a Creative Commons Attribution 3.0 License.