Brownian Excursion Conditioned on Its Local Time
Abstract
For a function $\ell$ satisfying suitable integrability (but not continuity) requirements, we construct a process $(B^\ell_u, 0 \leq u \leq 1)$ interpretable as Brownian excursion conditioned to have local time $\ell(\cdot)$ at time $1$. The construction is achieved by first defining a non-homogeneous version of Kingman's coalescent and then applying the general theory in Aldous (1993) relating excursion-type processes to continuum random trees. This complements work of Warren and Yor (1997) on the Brownian burglar.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 79-90
Publication Date: September 22, 1998
DOI: 10.1214/ECP.v3-996
References
- Aldous, D.J. (1991), The continuum random tree II: an overview. In M.T. Barlow and N.H. Bingham, editors, Stochastic Analysis, 23-70. Cambridge University Press. Math. Review 93f:60010
- Aldous, D.J. (1993), The continuum random tree III. Ann. Probab. 21, 248-289. Math. Review 94c:60015
- Bertoin, J. and Pitman, J. (1994), Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. 118, 147-166. Math. Review 95b:60097
- Biane, P. and Yor, M. (1987), Valeurs principales associees aux temps locaux Browniens. Bull. Sci. Math. (2) 111, 23-101. Math. Review 88g:60188
- Cremers, H. and Kadelka, D. (1986), On weak convergence of integral functions of stochastic processes with applications to processes taking paths in L(p,E). Stochastic Process. Appl. 21, 305-317. Math. Review 87h:60071
- Donnelly, P. (1986), A genealogical approach to variable population size models in population genetics. J. Appl. Probab. 23, 283-296. Math. Review 88a:92011
- Donnelly, P. and Kurtz, T.G. Particle representations for measure-valued population models. 1997. Preprint. Math. Review number not available.
- Drmota, M. and Gittenberger, B. (1997), On the profile of random trees. Random Structures and Algorithms 10, 421-451. Math. Review number not available.
- Le Gall, J. -F. (1991), Brownian excursions, trees and measure-valued branching processes. Ann. Probab. 19, 1399-1439. Math. Review 93b:60195
- Griffiths, R.C. and Tavare, S. (1994), Sampling theory for neutral alleles in a varying environment. Philos. Trans. Roy. Soc. London Ser. B 344, 403-410. Math. Review number not available.
- Kingman. J.F.C. (1982), Exchangeability and the evolution of large populations. In G. Koch and F. Spizzichino, editors, Exchangeability in Probability and Statistics, pages 97-112. North-Holland. Math. Review 84b:60095
- Kingman, J.F.C. (1982), The coalescent. Stochastic Process. Appl. 13, 235-248. Math. Review 84a:60079
- Perkins, E.A. (1991), Conditional Dawson-Watanabe processes and Fleming-Viot processes. In Seminar in Stochastic Processes 1991, pages 142-155. Birkhauser. Math. Review 93h:60078
- Takacs, L. (1995), Brownian local times. J. Appl. Math. Stochastic Anal. 8, 209-232, 1995. Math. Review 96f:60137
- Tavare, S. (1984), Line-of-descent and genealogical processes and their applications in population genetics models. Theoret. Population Biol. 26, 119-164. Math. Review 86f:92017
- Warren, J. and Yor, M. (1998), The Brownian burglar: conditioning Brownian motion by its local time process. In J. Azema, M. Emery, M. Ledoux, and M. Yor, editors, Seminaire de Probabilites XXXII, pages 328-342. Springer. (Lecture Notes in Math. 1686.) Math. Review number not available.

This work is licensed under a Creative Commons Attribution 3.0 License.