Fractional Brownian Motion and the Markov Property
Laure Coutin (Université Paul Sabatier)
Abstract
Fractional Brownian motion belongs to a class of long memory Gaussian processes that can be represented as linear functionals of an infinite dimensional Markov process. This leads naturally to:
- An efficient algorithm to approximate the process.
- An ergodic theorem which applies to functionals of the type
$$\int_0^t \phi(V_h(s)),ds \quad\text{where}\quad V_h(s)=\int_0^s h(s-u), dB_u,.$$
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 95-107
Publication Date: October 27, 1998
DOI: 10.1214/ECP.v3-998
References
- J. Audounet and G. Montseny, Mod`eles non h'er'editaires pour l'analyse et le contr^ole de syst`emes `a m'emoire longue, April 1995, JournÃes d'etude: les systemes non entiers en automatique, Bordeaux, France.
- J. Audounet, G. Montseny, and B.Mbodje, Optimal models of fractional integrators and application to systems with fading memory, 1993, IEEE SMC's conference, Le Touquet (France).
- J. Beran and N. Terrin, Testing for a change of the long-memory parameter, Biometrika 83 (1996), no. 3, 627--638. Math Review link
- V.S. Borkar, Probability Theory: an advanced course, Universitext, Springer, 1995. Math Review link
- N. Bouleau and D. L'epingle, Numerical methods for stochastic processes, Wiley series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., 1994, ISBN 0-471-54641-0. Math Review link
- Ph. Carmona and L. Coutin, Simultaneous approximation of a family of (stochastic) differential equations, Unpublished, June 1998.
- Ph. Carmona, L. Coutin, and G. Montseny, Applications of a representation of long memory Gaussian processes, Submitted to Stochastic Processes and their Applications, June 1997.
- Ph. Carmona, L. Coutin, and G. Montseny, A diffusive Markovian representation of fractional Brownian motion with Hurst parameter less than $1/2$, Submitted to Statistic and Probability Letters, November 1998.
- N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory, Wiley Classics Library Edition Published 1988, John Wiley and Sons, New York, 1988. Math Review link
- H. Graf, Long range correlations and estimation of the self-similarity parameter, Ph.D. thesis, ETH Z"urich, 1983.
- W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson, On the self-similar nature of Ethernet traffic, IEEE/ACM Trans. Networking 2 (1994), no.~1, 1--15.
- B. Mandelbrot, Self-similar error clusters in communication and the concept of conditional stationarity, IEEE Trans. Commun. Technol. COM--13 (1965), 71--90.
- B.B. Mandelbrot and Van Ness, Fractional brownian motions, fractional noises and applications, SIAM Review 10 (1968), no.~4, 422--437.
- Yu.A. Rozanov, Stationary random processes, Holden--Day, San Francisco, 1966.

This work is licensed under a Creative Commons Attribution 3.0 License.