Mathematical Problems in Engineering
Volume 2011 (2011), Article ID 909410, 18 pages
http://dx.doi.org/10.1155/2011/909410
Research Article

Mathematical Extrapolating of Highly Efficient Fin Systems

Thermal Engineering and Desalination Technology Department, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia

Received 26 February 2011; Accepted 16 June 2011

Academic Editor: Bin Liu

Copyright © 2011 A.-R. A. Khaled. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Different high-performance fins are mathematically analyzed in this work. Initially, three types are considered: (i) exponential, (ii) parabolic, and (iii) triangular fins. Analytical solutions are obtained. Accordingly, the effective thermal efficiency and the effective volumetric heat dissipation rate are calculated. The analytical results were validated against numerical solutions. It is found that the triangular fin has the maximum effective thermal length. In addition, the exponential pin fin is found to have the largest effective thermal efficiency. However, the effective efficiency for the straight one is the maximum when its effective thermal length based on profile area is greater than 1.4. Furthermore, the exponential straight fin is found to have effective volumetric heat dissipation that can be 440% and 580% above the parabolic and triangular straight fins, respectively. In contrast, the exponential pin fin is found to possess effective volumetric heat dissipation that can be 120% and 132% above the parabolic and triangular pin fins, respectively. Finally, new high performance fins are mathematically generated that can have effective volumetric heat dissipation of 24% and 12% above those of exponential pin and straight fins, respectively.