Exact Convergence Rate for the Maximum of Standardized Gaussian Increments
Axel Munk (Goettingen University)
Abstract
We prove an almost sure limit theorem on the exact convergence rate of the maximum of standardized gaussian random walk increments. This gives a more precise version of Shao's theorem ( Shao, Q.-M., 1995. On a conjecture of Révész. Proc. Amer. Math. Soc. 123, 575-582 ) in the gaussian case.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 302-310
Publication Date: June 17, 2008
DOI: 10.1214/ECP.v13-1380
References
- J. M. P. Albin On the upper and lower classes for a stationary Gaussian stochastic process. Ann. Probab. 22(1994), 77-93. Math. Review 95e:60038
- L. Boysen, A. Kempe, A. Munk, V. Liebscher, O. Wittich. Consistencies and rates of convergence of jump penalized least squares estimators. Ann. Statist. (2007), to appear.
- H. P. Chan, T. L. Lai. Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices. Ann. Probab. 34(2006), 80-121. Math. Review 2006k:60088
- K.L. Chung, P. Erdös, T. Sirao. On the Lipschitz's condition for Brownian motion. J. Math. Soc. Japan 11(1959), 263-274. Math. Review 22:12602
- P.L. Davies, A. Kovac. Local extremes, runs, strings and multiresolution. Ann. Statist. 29(2001), 1-65. Math. Review 2002c:62067
- P. Deheuvels, L. Devroye. Limit laws of Erdös-Rényi-Shepp type. Ann. Probab. 15(1987), 1363-1386. Math. Review 88f:60055
- P. Deheuvels, L. Devroye, J. Lynch. Exact convergence rate in the limit theorems of Erdös-Rényi and Shepp. Ann. Probab. 14(1986), 209-223. Math. Review 87d:60032
- L. Dümbgen, V.G. Spokoiny. Multiscale testing of qualitative hypotheses. Ann. Statist. 29(2001), 124-152. Math. Review 2002j:62064
- Z. Kabluchko. Extreme-value analysis of standardized Gaussian increments (2007). Not published. Available at http://www.arxiv.org/abs/0706.1849
- M.R. Leadbetter, G. Lindgren, H. Rootzén. Extremes and related properties of random sequences and processes. Springer Series in Statistics (1983). New York-Heidelberg-Berlin: Springer-Verlag. Math. Review 84h:60050
- P.K. Pathak, C. Qualls. A law of iterated logarithm for stationary Gaussian processes. Trans. Amer. Math. Soc. 181(1973), 185-193. Math. Review 47:9703
- J. Pickands. An iterated logarithm law for the maximum in a stationary Gaussian sequence. Z. Wahrscheinlichkeitstheorie verw. Geb. 12(1969), 344-353. Math. Review 40:5003
- P. Révész. On the increments of Wiener and related processes. Ann. Probab. 10(1982), 613-622. Math. Review 83i:60048
- Q.-M. Shao. On a conjecture of Révész. Proc. Amer. Math. Soc. 123(1995), 575-582. Math. Review 95c:60031
- D. Siegmund, E. S. Venkatraman. Using the generalized likelihood ratio statistic for sequential detection of a change-point. Ann. Statist. 23(1995), 255-271. Math. Review 96c:62135
- D. Siegmund, B. Yakir. Tail probabilities for the null distribution of scanning statistics. Bernoulli 6(2000), 191-213. Math. Review 2001e:62036
- J. Steinebach. On a conjecture of Révész and its analogue for renewal processes, in: B. Szyszkowicz, ed. Asymptotic methods in probability and statistics. A volume in honour of Miklós Csörgö. An international conference at Carleton Univ., Canada, 1997. Amsterdam: North-Holland/Elsevier. Math. Review 2000c:60033
- C. Qualls. The law of the iterated logarithm on arbitrary sequences for stationary Gaussian processes and Brownian motion. Ann. Probab. 5(1977), 724-739. Math. Review 56:9655
- C. Qualls, H. Watanabe. An asymptotic 0-1 behavior of Gaussian processes. Ann. Math. Statist. 42(1971), 2029-2035. Math. Review 46:6437

This work is licensed under a Creative Commons Attribution 3.0 License.