Spectral norm of circulant type matrices with heavy tailed entries
Rajat Subhra Hazra (Indian Statistical Institute, Kolkata)
Koushik Saha (Indian Statistical Institute, Kolkata)
Abstract
We first study the probabilistic properties of the spectral norm of scaled eigenvalues of large dimensional Toeplitz, circulant and symmetric circulant matrices when the input sequence is independent and identically distributed with appropriate heavy tails. When the input sequence is a stationary two sided moving average process of infinite order, we scale the eigenvalues by the spectral density at appropriate ordinates and study the limit for their maximums.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 299-313
Publication Date: July 23, 2010
DOI: 10.1214/ECP.v15-1554
References
- R. Adamczak. A few remarks on the operator norm of random Toeplitz matrices. J. Theoret. Probab., 23(1) 85--108, 2010. ISSN 0894-9840. 10.1007/s10959-008-0201-7. Math. Review 2591905
- Auffinger, Antonio and Ben Arous, Gerard and Peche, Sandrine. Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincare Probab. Stat. 45 (2009), no. 3, 589--610. Math. Review 2548495
- Z.D. Bai. Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica, 9(3):611--677, 1999. ISSN 1017-0405. Math. Review 1711663
- Z.D.Bai and Y.Q.Yin. Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab., 16(4):1729--1741, 1988. ISSN 0091-1798. Math. Review 0958213
- A.Basak and A.Bose. Limiting spectral distribution of some band matrices. To appear in Periodica Hungarica, 2010.
- P.Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. ISBN 0-471-19745-9. 10.1002/9780470316962. A Wiley-Interscience Publication. Math. Review 1700749
- A.Bose, R.S.Hazra, and K.Saha. Spectral Norm of Circulant-Type Matrices. To appear in Journal of Theoretical Probability. 10.1007/s10959-009-0257-5.
- A.Bose, R.S.Hazra, and K.Saha. Limiting spectral distribution of circulant type matrices with dependent inputs. Electron. J. Probab., 14:no. 86, 2463--2491, 2009. ISSN 1083-6489. Math. Review 2563248
- A.Bose and J.Mitra. Limiting spectral distribution of a special circulant. Statist. Probab. Lett., 60(1):111--120, 2002. ISSN 0167--7152. 10.1016/S0167-7152(02)00289-4. Math. Review 1945684
- A.Bose and A.Sen. Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices. Electron. Comm. Probab., 12:29--35 (electronic), 2007. ISSN 1083-589X. Paging changed to 21--27 on journal site. Math. Review 2284045
- W.Bryc and S.Sethuraman. A remark on maximum eigenvalue for circulant matrices, 2009. High Dimensional Probability V: The Luminy Volume, 179--184, IMS Collections 5, Institute of Mathematical Statistics, Beachwood, OH, 2009.
- W.Bryc, A.Dembo, and T.Jiang. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab., 34(1):1--38, 2006. ISSN 0091-1798. Math. Review 2206341
- R.A.Davis and T.Mikosch. The maximum of the periodogram of a non-Gaussian sequence. Ann. Probab., 27(1):522--536, 1999. ISSN 0091--1798. Math. Review 1681157
- J.Fan and Q.Yao. Nonlinear time series. Springer Series in Statistics. Springer-Verlag, New York, 2003. ISBN 0-387-95170-9. Nonparametric and parametric methods. Math. Review 1964455
- R.Gray. Toeplitz and circulant matrices: A review. Now Publishers, 2006.
- U.Grenander and G.Szego. Toeplitz forms and their applications. Chelsea Publishing Co., New York, second edition, 1984. ISBN 0-8284-0321-X. Math. Review 0890515
- C.Hammond and S.J.Miller. Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab., 18(3):537--566, 2005. ISSN 0894-9840. Math. Review 2167641
- V.Kargin. Spectrum of random Toeplitz matrices with band structure. Electron. Commun. Probab., 14:412--421, 2009. ISSN 1083-589X. Math. Review 2551851
- Z.Lin and W.Liu. On maxima of periodograms of stationary processes. Ann. Statist., 37(5B):2676--2695, 2009. ISSN 0090-5364. Math. Review 2541443
- A.Massey, S.J.Miller, and J.Sinsheimer. Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices. J. Theoret. Probab., 20(3):637--662, 2007. Math. Review 2337145
- M.Meckes. Some results on random circulant matrices. High Dimensional Probability V: The Luminy Volume, 213--223, IMS Collections 5, Institute of Mathematical Statistics, Beachwood, OH, 2009
- M.W.Meckes. On the spectral norm of a random Toeplitz matrix. Electron. Comm. Probab., 12:315--325 (electronic), 2007. ISSN 1083-589X. Math. Review 2342710
- T.Mikosch, S.Resnick, and G.Samorodnitsky. The maximum of the periodogram for a heavy-tailed sequence. Ann. Probab., 28(2):885--908, 2000. ISSN 0091-1798. Math. Review 1782277
- S.I.Resnick. Extreme values, regular variation, and point processes, volume?4 of Applied Probability. A Series of the Applied Probability Trust. Springer-Verlag, New York, 1987. ISBN 0-387-96481-9. Math. Review 0900810
- G.Samorodnitsky and M.S.Taqqu. Stable non-Gaussian random processes. Stochastic Modeling. Chapman & Hall, New York, 1994. ISBN 0-412-05171-0. Stochastic models with infinite variance. Math. Review 1280932
- J.W.Silverstein. The spectral radii and norms of large-dimensional non-central random matrices. Comm. Statist. Stochastic Models, 10(3): 525--532, 1994. ISSN 0882-0287. Math. Review 1284550
- A.Soshnikov. Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab., 9:82--91 (electronic), 2004. ISSN 1083-589X. Math. Review 2081462
- A.Soshnikov. Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical physics of quantum mechanics, volume 690 of Lecture Notes in Phys., pages 351--364. Springer, Berlin, 2006. Math. Review 2234922
- Y.Q.Yin, Z.D.Bai, and P.R.Krishnaiah. On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Related Fields, 78(4): 509--521, 1988. ISSN 0178-8051. Math. Review 0950344

This work is licensed under a Creative Commons Attribution 3.0 License.